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. Formulation and Applications

An economic problem of great practical importance is to choose the

location of facilities, such as industrial plants or warehouses, in order to

minimize the cost (or maximize the profit) of satisfying the demand for some

commodity. In general there are fixed costs for locating the facilities and

transportation costs for distributing the commodities between the facilities

and the clients. This problem has been extensively studied in the literature

and is often referred to as the Io . walrehouse or faility location
5'F

bl. When each potential facility has a capacity, which is the maximum

demand that it can supply, the problem is known as the capacitated~facility

l 9cation problem. When the capacity hypothesis is not needed, we have the

sinpleor uncaoacitated facility location problem, whichy6 abbreviate by UL.

The mathematical formulation of these problems as integer programs has

proven very fruitful in the derivation of solution methods. To formalize UL,

we consider a set of clients I a (1,...,m} with a given demand f~pr a single

commodity, and a set of sites J - {1,...,n} where facilities can be"

located. In the literature it has been traditional to use the phrasing

"facility j is open" to mean that a facility is actually located at site

J. Let f. be the given fixed cost of opening facility j and assume there

is a known profit cij that is made by satisfying the demand of client i

from facility J. Typically, cij is a function of the production costs at

facility J, the transportation costs from facility j to client i, the

demand of client i and the selling price to client i. For example,

cij 2 d.(Pi-qj-tij) where di  is the demand, pi the orice per unit, qj

the production cost per unit and tij the transportation cost per unit. UL
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is to open a subset of facilities in order to maximize total profit, given

that all demand has to be satisfied.

For any given set S of open facilities, it is optimal to serve client

i from a facility j for which cij is maximum over j c S. So, given S,

the profit is z(S) a max cij - L f3 " The problem is to find a set S

that yields the maximum profit Z, i.e. Z - max z(S). This can be viewed as
Sci

a combinatorial formulation of the problem. Note that there is no loss of

generality in assuming f3 > 0 for all j c J since if fk < 0 every

optimal solution contains facility k.

An integer linear programing formulation is obtained by introducing the

following variables. Let xj 1 1 if facility j is open and xa a 0

.otherwise; Yij a 1 if the demand of client i is satisfied from facility

j and yij 0 0. otherwise. The integer progran is

(1.1) Z amax ~ ~~-Xf-x 3i jcJJ j(J

(1.2) j - 1 all i i I

(1.3) J <xi all i C I, j C J

(1.4) Xj, YiJ C (0,1} all i C I. j C J.

The constraints (1.2) guarantee that the demand of every client is satisfied,

whereas (1.3) quarantees that the clients are supplied only from open

facilities.

'I
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The selling price of the commodity to client I enters the solution of

(1.1)-(1.4) as a constant. Only the costs (production, transportation and

fixed operating costs) are relevant for the decision. This is why in the

literature UL is often presented as

m(1.1') mf i d14YiJ fx
Id jrJ d j AJ

subject to (1.2)-(1.4) where dtj is the cost (production plus transpor-

tation) of serving client I from facility J. This formulation is math-

ematically equivalent to (1.1)-(1.4) since (1.1') becomes -(1.1) by setting

cj - -dtj. In other words, costs can simply be regarded as negative profits.

In the integer program (1.1)-(1.4), the xi s are the important vari-

ables. Once a set of xi s that satisfy (1.4) are specified, it is simple

to determine a set of ytj's that solves the integer program for the fixed

xi's. Even if we drop the integrality requirement on the yij's, an optimal

set of yij's is given by yjj - 1 and yij - O, j * j* where ctjj

max{cjj: xj - 1, j e J). Thus (1.4) can be replaced by

(1.4') xj c (0,1), Yij -2 0 all i C I, j C J.

The formulation (1.1)-(1.3), (1.4') is a mixed integer linear program.

i'I "-"" "" """"" """""''" "" "'"''""""" .''
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An integer linear program equivalent to (1.1)-(1.4) is obtained by

replacing the constraints (1.3) by the more compact set of constraints

(1.3') Y <mx all j C J.
ii

To see that (1.3) can be replaced by (1.3'), note that when xj a 0 both

(1.3) and (1.3') imply yij a 0 for all i c I, and when xj = 1 both (1.3)

and (1.3') are satisfied for all choices of Yij that satisfy the constraints
(1.2). However, the two formulations are equivalent only for 0-1 values of

the variables xj. For each J, (1.3') is obtained by summing (1.3) over all

i e I; hence any solution to (1.2), (1.3) is also a solution to (1.2) and

(1.3'). But the converse is false when 0 < x < 1; i.e. the feasible region

defined by (1.2), (1.3') and

(1.5) 0 < xj , Yij 10 all i C I, J J9
strictly contains the region defined by (1.2), (1.3) and (1.5).

In UL, the number of facilities that are open in an optimal solution

is not specified; it is determined by a solution of (1.1)-(1.4). From a

-practitioner's standpoint, it might be useful to consider a formulation where

the number p of open facilities is a parameter of the problem. This is

realized by adding one of the following constraints to the program (1.1)-(1.4)

do

a.
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(1..6) x up

or

(1.7) x p
JCJ

where p is some given integer, 1 < p < n. The formulation (1.1)-(1.4),

(1.6) has been called the p-facility location problem. When n = m and

f. - 0 for all j e J, (1.1)-(1.4), (1.6) is known as the p-median problem.

It is often solved in the literature using the minimization objective func-

tion (1.1') where (dtj) is a distance matrix, i.e. it is positive, symmetric

and dtj + djk I dik, 1< i,j,k < n. This model is developed in Chapter 3 of

the book.

To motivate further the study of UL, we give two examples. First we

interpret (1.1)-(1.4) as a bank account location problem, see Cornuejols,

Fisher, Nemhauser (1977b). The second example occurs in clustering analysis,

see Mulvey and Crowder (1979). Other examples arise In lock-box location

EKraus, Janssen and McAdam (1970)] location of offshore drilling platforms

[Balas and Padberg (1976)], economic lot sizing [Krarup and Bilde (1977)],

machine scheduling and information retrieval [Hansen and Kaufman (1972)] and

portfolio management [Beck and Mulvey (1982)].

A Bank Account Location Problem

The number of days required to clear a check drawn on a bank in city j

depends on the city i in which the check is cashed. Thus, to maximize its
available funds a company that pays bills to clients in various locations may

find it advantageous to maintain accounts in several strategically located
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banks. It would then pay bills to clients in city i from a bank in city j 1
that had the largest clearing time. The economic significance to large

corporations of such a strategy is discussed in an article in Businessweek

(1974).

To formalize the problem of selecting an optimal set of account

locations, let I £ (1,...,m} be the set of client locations, J = (1,...,n)

the set of potential account locations, fj the fixed cost of maintaining an

account in city J, di the dollar volume of checks paid in city i, and $ij

the number of days (translated into monetary value) to clear a check issued

in city J and cashed in city i. All this information is assumed to be

known and cij disij represents the value of payinq clients in city i

from an account in city J. Let xj =1 if an account is maintained in city

j, and x. 2 0 otherwise; yij = 1 if clients in city i are paid from

account j, and yij = 0 otherwise. Then the account location problem can

* be stated as (1.1-(1.4).

Besides desiring to delay paynents for as long as possible, corporations

also want to collect funds due to them as quickly as possible. This can be

done by situating check collection centers or "lock-boxes" at optimal

locations. Since (1.1) and (1.1') are mathematically equivalent, (1.1)-(1.4)

is also a model for the lock-box problem.

A Clusterino Problem

Cluster analysis consists of partitioning objects into classes, known as

clusters, in such a way that the elements within a cluster have a high degree

of natural association among themselves while the clusters are relatively

distinct from one another. Cluster analysis is used in biology, psychology,

*V
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medicine, artificial intelligence, pattern recognition, marketing research,

automatic classification and statistics.

Let I - (1,...,m} be the set of objects to be clustered. The

clustering is done around objects that "represent" the clusters. Let

J - (1,...,n) be the set of eligible "cluster representatives". In many

applications J a 1. However in some applications IJI < III, i.e. only

objects with certain characteristics can qualify as representatives (e.g.

survey papers and books in the automatic classification of technical material

in some field). In other cases II < 1JI, (e.g. in the automatic classi-

fication of technical material, an alternative to the above policy is to

represent a cluster by a list of key words. This list does not need to

. , match exactly that of any single paper in the cluster).

The clustering problem is defined relative to a matrix of parameters

cii that represent the similarity between objects i and j. For example

cij could be the number of common key words associated with technical papers

i and J. Anderberg (1973) gives several ways of calculating the similar-

ity matrix C. In most applications there are no natural fixed charges.

Rather, the constraint (1.6) is added to the formulation (1.1)-(1.4).

S.-'.. - - ' ' " - ' " ' " - ' t
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2. Brief Historical Overview

There is a vast literature on the uncapacitated location problem.

V Krarup and Pruzan (1983) give an up-to-date survey. We will not repeat their

effort here. However, to set the stage for the ensuing sections, we will

mention the main solution approaches and cite some basic references.

The first approaches to solve UL were heuristic. One of the earliest

heuristics is due to Kuehn and Hamburger (1963), who actually present it for

a wider class of location problems. It consists of two routines. The first

routine opens facilities sequentially in an order that maximizes the increase

of the objective function at each step. It stops when adding a new facility

could only decrease the objective. Kuehn and Hamburger called it the "add

routine"; in the modern literature such a procedure is called a greedy

heuristic because of its appetite for maximum improvement at each step.

Their second routine is the "bump and shift routine". It eliminates (bumps)

any facility that has become uneconomical because of the presence of other

facilities chosen subsequently by the greedy heuristic. Then, starting from

this feasible solution, it considers interchanging (shifting) an open and

closed facility. Such a pairwise interchange is performed if it improves

the current feasible solution and the procedure stops when a solution has

been found that cannot be improved by such interchanges. In the remainder of

this chapter, the shifting procedure will be referred to as an interchange

heuri stic.

The greedy and Interchange heuristics are the basis of numerous

approximation algorithms. They can, of course, be helpful in exact

algorithms that require feasible initial solutions or use feasible solutions

in other ways, Spielberg (1969b) and Hansen and Kaufman (1972). However,

-4
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when a heuristic is used to ibtain a final solution, it is very important to

have an upper bound as well so that the user can be confident that the

heuristic solution value is not too far from the optimal value. Cornuejols,

Fisher and Nemhauser (1977b) gave such bounds for the greedy and interchange

heuristics, both a priori worst-case bounds and a posteriori bounds on a

particular solution constructed by the heuristic. These bounds were

generalized to the maximization of submodular set functions (see Section 9)

by Nemhauser, Wolsey and Fisher (1978).

General solution techniques for finding optimal solutions to integer

programs have been customized for UL. The mixed integer linear programming

formulation can be solved by Benders decomposition, Benders (1962). This

approach was proposed by Balinski and Wolfe (1963) and appears to have been

the first attempt to solve UL to optimality. The computational experiments

were discouraging, see Balinski (1965), and this method was abandoned until

recently. Magnanti and Wong (1977) develop techniques to accelerate the

'convergence of Benders decompositon. They generate strong cuts from the set
of feasible Benders cuts and by so doing they are able to reduce the number

of integer programs to be solved. Nemhauser and Wolsey (1981) consider the

Benders cuts in the more general framework of maximizing a submodular set

functi on.

Branch-and-bound algorithms for the uncapacitated plant location problem

use the fact that it is not necessary to constrain the variables yij to be

integral. Branching is done on a binary enumeration tree with respect to the

variables x3. Bounds are obtained from one of the two linear programming

relaxations - (1.1), (1.2), (1.5) and (1.3) or (1.3'). The first algorithms

,,

"' S '",,..- ,+ . . .'',,". . ... " . . . . . ."." . , . ," .". . . ' ' " •+.,.-.. ' .-.- " ..,, "" '., ,.., "",, , ,. "P .
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used the linear program with (1.3'). Efroymson and Roy (1966) showed that

this linear program can be solved analytically so that the bound at each node

of the enumeration tree could be computed very quickly in constant time.

Improvements to Efroymson's and Roy's algorithm were made by Spielberg

(1969a), Khumawala (1972) and Hansen (1972). However, when (1.3') is used

in a linear programming relaxation, the bounds obtained are generally not

sufficiently strong to curtail the enumeration adequately.

As we observed previously, the constraints (1.3) imply (1.3') but not

conversely. The linear programming relaxation that uses (1.3) is called the

str:ng linear programming relaxation abbreviated by SLP. Revelle and Swain

(1970), among others, observed that SLP is so effective that its solution is

very often integral. Thus a branch-and-bound algorithm that uses SLP to

compute bounds is very likely to perform well in the sense that very little

(if any) enumeration will be required. However, because of its size, it is

not efficient to solve SLP directly by the simplex method.

Much of the recent research on UL has involved the development of

special purpose algorithms for solving SLP. Marsten (1972) used parametric

linear programming and a special implementation of the simplex method.

Garfinkel, Neebe and Rao (1974) used Dantzig-Wolfe decomposition. Schrage

(1975) devised a generalized simplex method to treat the variable upper

bounds (1.3). Guignard and Spielberg (1977) suggested a version of the

simplx method that pivots only to integral vertices of the polytope (1.2),

V, (1.3), (1.6). Cornuejols and Thizy (1982b) used a primal subgradient

algorithm.

I i we e ;.,w; ". " ".", ". " •: -- "•- , : .',, " -" -, --""- ...
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Dual algorithms or algorithms that solve the dual of the strong linear

programming relaxation have the advantage that upper bounds are obtained from

an- dual feasible solution. Thus a sufficiently good bound may be obtained

to fathom a node of the enumeration tree prior to solving the dual to

optimality.

Bilde and Krarup (1977) and Erlenkotter (1978) used heuristic methods to

obtain a near-optimal solution of the dual. Erlenkotter went a step further

by using the complementarity slackness conditions of linear programming to

improve this bound. His procedure was so effective that in 45 out of the 48

problems that he tested, optimality was reached at the first node of the

> branch-and-bound algorithm. His DUALOC code appears to outperform all exist-

* I.- * ing algorithms.

A Lagrangian dual of the formulation (1.1)-(1.4), proposed by Geoffrion

(1974), is obtained by weighting the constraints (1.2) by multipliers and

placing them in the objective function. It can be solved using subgradient

optimization, see Held, Wolfe and Crowder (1974). The Lagrangian approach

can also be used for the p-facility location problem.. Some computational

results are reported in Narula, Ogbu and Samuelsson (1977), in Cornuejols,

Fisher, Nemhauser (1977b) and in Mulvey and Crowder (1979). Krarup and

Pruzan (1983) mention a different Lagrangian dual obtained when constraints

(1.3) (instead of (1.2)) are weighted by multipliers and placed in the

objective function.

',..
4-° P ' '
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*3. Computational Complexity

An algorithm is said to be a polynomial-time algorithm for problem P,

if for all instances of P (possible data sets), the computing time of the

• algorithm can be bounded by a polynomial function of the data size. If L

measures the data size and k is the order of the polynomial, we say that

the computing time of the alqorithm is O(Lk). Sometimes it is more conve-

nient to express the computing time as a function of basic data parameters,

such as the dimension of a matrix or the number of nodes in a graph. Then,

but only then, it is assumed that all arithmetric operations and compari-

sons are performed in unit time.

A fundamental theoretical question, also of some practical importance,

is whether a given combinatorial optimization problem can be solved by some

polynomial-time algorithm. Denote by P the class of problems that can be

solved in polynomial-time, i.e. by some polynomial-time algorithm. For most

combinatorial optimization problems of practical interest, the question -

are they in P? - has not been answered. A significant step was made by Cook

(1971) and Karp (1972) who introduced the notion of NP-complete problems.

This is a class of combinatorial problems that are equivalent in the sense

that either all or none of these problems can be solved by a polynomial-time

algorithm.

At present no polynomial-time algorithm is known for solving any

NP-complete problem and it has been widely conjectured that none exists. A

problem is said to be NP-hard if the existence of a polynomial-time algorithm

to solve it would imply that all NP-complete problems can be solved by a

polynomial-time algorithm. Thus to show that a problem (P) is NP-hard it

suffices to find a polynomial transformation that reduces a known NP-complete

',-.',, % , . \ * :'a. . .* ' . :. . - : , . .. . .... :2;. .*;* .~:;~ .. . , . . . . ,N:; .. .. %,*%
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problem, see e.g. the .comprehensive list given by Garey and Johnson (1979),

to the problem (P).

Theorem 3.1 The uncapacitated plant location problem is NP-hard.

Proof: We need to introduce the vertex cover problem:

Given a graph G and an integer k, find whether there exists a subset

of k vertices of G that cover all the edges of G. (Vertex v is said

to cover edqe e if v is an endpoint of e.) The vertex cover problem is

NP-complete, see Karp (1972) or Garey and Johnson (1979). We reduce it to

UL.

Consider a graph G - (VE) with vertex set V and edge set E.

Construct an instance of UL with the set of potential facilities J = V and
set of clients I z E. Let cij - 0 for all i c E and j c V, and let

fj = 1 for all j e V. This transformation is polynomial in the size of the

graph.

Note that the instance of UL defined in this way consists of covering

all the edges of the graph G with the minimum number of vertices. Thus an

.optimal solution of UL provides the answer to the vertex cover problem. This

proves that UL is NP-hard. 0

A polynomial transformation that reduces a known NP-hard problem to a

problem (0) shows that (0) is also NP-hard. An immediate corollary of

Theorem 3.1 is that the p-facility location problem is NP-hard since solving

it for every p 1,..,,n provides a solution to UL.

Althouah UL is NP-hard, some special cases can be solved in polynomial-

time. Kolen (1982) has shown that UL is solvable in time O(r 3 ) when the

dP
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problem is defined as a tree with r nodes and certain other assumptions are

satisfied. These are that the clients as well as the facilities are located

at nodes of the tree. A length is associated with each edge of the tree and

dtj is the distance between nodes i and j. Kolen solves the formulation

(l)', (1.2)-(1.4) and shows that the strong linear programming relaxation

always has an integral optimal solution.

Another interesting case of the uncapacitated plant location problem

that can be solved in polynomial time was discovered by Krarup and Bilde

(1977). In this instance too, the crux is that the strong linear programming

5 relaxation always has an integral optimal solution. The conditions required

by Krarup and Bilde generalize those obtained when a classical economic lot

size problem is formulated as an uncapacitated plant location problem.

Finally, Barany, Edmonds and Wolsey (1983) have given a polynomial-time

algorithm for a tree partitioning problem that contains both Kolen 's and

*Krarup's and Bilde's problems.

'

i.

.5.
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4. Duality

Suppose we are given a feasible solution to UL that is claimed to be

optimal or nearly optimal (within a specified absolute or relative

tolerance). We know of only two ways to verify this claim.

a. enumeration: compare, perhaps implicitly, the value of this feasible

b..solution to all others.

b. bounding: determine an upper bound on the optimal value of all feasible

solutions that is sharp enough to verify the claim.

Enumeration is useful algorithmically only when it can be done implic-

itly. Generally, this means that the enumerative approach, as in a

branch-and-bound algorithm, uses upper bounds to curtail the enumeration.

Conversely, an algorithm whose primary thrust is bounding may need to resort

to some enumeration to verify the claim.

The point is that good upper bounds, as well as good feasible solutions,

are crucial in solving UL, as for that matter, any hard combinatorial

optimization problem. We will see, however, that UL has many features that

make it a relatively easy NP-hard problem.

Duality plays a key role in the determination of upper bounds. The dual

of the strong linear programing relaxation given by (1.1)-(1.3), (1.5) is

(4.1) W-min 1 u + t
ici Jed

(4.2) u i + wij >.cij all i e I, j e J

S(4.3) i wi + t > -f all J e J
.ij

(4.4) wUj, t 1 0 all i e 1, j e J.
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We can eliminate variables and constraints from this formulation by

noting that:

a. for given wij, (4.1) implies that we would like to make t , s small

as possible. Thus (4.3) and (4.4) imply that t i ( wij " f )+

where (a)+ - max(O,a).

b. for given ui, (4.1) also implies that we would like to make wij as

small as possible. Thus (4.2) and (4.4) imply that wij - (cij - ui)+ ,

Thus

(4.5) t4 - [ (ci - ui) - f all J c J.iI ""

If we think of the uis as prices associated with the clients, the t 's

are the profits from the facilities relative to these prices. In other words,

if someone agreed to pay us ui for the right to serve the ith client,

we would be willing to sell the Jth facility for the price tj given by (4.5).

Substituting (4.5) into (4.1) yields the condensed dual

(4.6) W a min{ u u + .[ (ci, -( U) + -f

u iCI JCJ iti

The dual is then to determine a minimum sum set of prices ui for the

clients and consequently a minimum sun set of prices for the facilities so

that we would agree to sell the operation. It tells us the linear program-

ming approximation of the worth of our assets.

If C C(cij - ui) -fj > 0, then some ui can be increased withoutiti

increasing the objective function (4.6). Also if ui > max cij, then u1

JC J
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can be decreased without increasing the objective function (4.6). These

observations yield a second condensed dual

(4.7) W S min ui
u idl

(4.8) (cij - u - fj < 0 all j e J

(4.9) ui Imax c i j  all i c I.

Although both condensed dual formulations are nonlinear, they are

important because they contain only m variables; furthermore for any value

of u, we obtain the upper bound

(4.10) W(u) * ui + (cu - - +

idI jJ it,

'When (4.8) holds, the upper bound reduces to

(4.11) W(u)- I" ui.

A Lagrangian dual of (1.1)-(1.4) is obtained by weighting the constraints

(1.2) by multipliers ui and placing them in the objective function. Let

(4.12) L(u) max[ 1 4 cijY j- J fjxj + i ui (" i )]iCI JCJ C( C1 jj i

subject to (1.3) and (1.4).

-. .*

d .""""": .""" . . . ." .",'.""..".","." ',". ' e" .2 , "" , .". "" ""€"" £ . .", '



18

Frequently, a Lagrangian dual provides a tighter upper bound than a

linear programing dual. But this is not the case here.

Proposition 4.2 L(u) = W(u) for all u.

Proof: L(u) amax I ) (ciJ - u)yij - + u subject to
iC 191 jej f J ic

(1.3) and (1.4). Hence Y if c - ui > 0, Yi 0 if ci - ui < 0

and yij =0 or x. if cij - u 0. Thus

(4.13) L(u) = max (c~ ~~- )x u.
xjc(0,1} je it i Y i l1

= tj + E ui  W(u)
jeJ icI

where t. is given by (4.5). This is true since xj =1 ifiI (cij - ui +

fj > 0, x. = 0 if (cij- ui ) - f. < 0 and x. a 0 or 1 otherwise. 0

Corollary 4.3 L = min L(u) W.
U

YWhen u satisfies the constraints (4.8), the solution of (4.13)

satisfies the complementarity conditions

(4.14) ( Z (c.. - ui )  - f.)x. = 0 all j e J.
13 1

Eluation (4.14) suggests that if u satisfies (4.8), to find a good primal

solution we should only consider ooening those facilities for which

(cij -u) - f O.



5. Heuristics

The combinatorial formulation of the uncapacitated plant location problem

max z(S) where z(S) - Tmax cj f can be viewed as a condensed,
SCJ 1(1I jes SJ

nonlinear primal that depends only on the values of the sets S c J. Based

on this observation numerous authors have proposed heuristics that iterate

on the set S of open locations and avoid an explicit integer programming

formulation. Two of the most basic heuristic approaches are described

below: the greedy and interchange heuristics.

The Greedy Heuristic.

Start with no facilities open. Given a set S of open facilities, open

that facility j f S whose incremental value pj(S) - z(S u {j}) - z(S) is

as large as possible, and is positive. If no such facility exists stop with

the set S of open facilities.

Formally

Initialization S= 9PJW c c1  - f t :1.
ifI

Iteration t Find Jt . arg max

If P (St-1) < 0 and t > 1, stop. The set St '1 is the

greedy solution with value ZG , z(St'1). If t - 1, the

greedy solution is SI - ztf}h

If 1 (St' ) > 0, St  t  u t" O~t

, Set t -t + 1.

The greedy heuristic requires at most n iterations and each iteration

requires O(nm) calculations. Thus the overall running time is O(n 2m).

, " -.5' -. '* + "-'""" "" " W '' W" , "" ' "", " ," "' , "" - ' "-"- - - - " "";'
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An Example

4 We will use the following small example to Introduce and motivate the

Ideas developed subsequently. Real.world problems are typically much larger

.4/ (e.g. m - n - 100). Consider the uncapacitated facility location problem

defined by the data:

m - 4, n * 6, f - (3,2,2,2,3,3) and

6 6 8 6 0 6

6 8 6 0 6 6
5 0 3 6 3 0

2 3 0 2 4 4

.

Applying the greedy heuristic to the example yields

iteration 1: (P1($),..,6(011 - (16,15,15,12,10,13).

Hence J, a 1 and S1 = (1).

*;. Iteration 2: (p2({ll),...,P 6({l})) (1,0,-1,-1,-1).

Hence J2 - 2 and S2 . {1,2}.

Iteration 3: (p3((1,2),...,06 ((1,2})) o (0,-1,-1,-1).

s~2  Ga z~2)
The set 2 of value Z , .17 is the greedy solution.

We can now use (4.10) to obtain upper bounds on the values of the feasi-

ible solutions produced by the greedy heuristic. In fact, such an upper

bound can be associated with any S c J.

"I

.. ;,"".". .... .. ... .. ... .. . ..... ............
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Def ine

uS) max cU all i S.

Note that

z(S) V(S - 7 f.
- I s

and

p.(S) (c.. - Ui(S))- f all j S.
J i l3  1 3

Thus, from (4.10)

W(-U(S)) 7 i.(S) + '7 1P (S)J+

since ctj Vi (S) j 0 for all 1 I and j S.

In particular if SG is the final set chosen by the greedy heuristic

then, by the stopping criterion, S (SG) < 0 j f SG  so that W(T(SG)) =

S
(SG). We have shown that the greedy solution SG  deviates from

optimality by at most 7 f-, which suggests that it will yield a small
jCSG3

error when the fixed costs are small In comparison to the profits.

Furthermore, we may obtain a better bound by considering all of the sets

-oproduced by the greedy algorithm. Let u -min ci  all i I and
jJ

--' - sk), k - Define a dual greedy value by WG i mnW(u).

k
-0 (0000,W )

In the example, u - (0 0 0 0), W( 0) - 7 p.(€) a 83, t*l (6,6,5,2),
Jej

.f ......... . '. -
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Sw I  14" -I 2 -2-'. Iu u - 20, - (6,8,5,3) and W(7 2 u 22. Hence

WG , 20.

The bound we have given so far is an a posteriori bound for a particular

instance of UL. In fact, a general relationship between ZG and WG that

a priori applies to all instances of UL is given by

Theorem 5.1 [Cornuejols, Fisher and Nemhauser (1977b)]

where e is the base of the natural logarithm and

R m min c f..
ij j- *4

iEI Jej j1E "

A proof of Theorem 5.1 that uses linear programming duality is given in

Fisher, Nemhauser and Wolsey [1978].

For the p-facility location problem with cij >0 for all i and j

and f. = 0 all j e J, we have R > 0. Thus we achieve a simple data

independent statement of Theorem 5.1.

Corollary 5.2 [Cornuejols, Fisher and Nemhauser (1977)] For the p-facility

location problem with ctj > 0 for all i and j and fj =0 all j J

ZG e~
_> 0.63.
WG 

e

- --__-.* ***-*.*****
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There are families of p-facility location problems for which this boundGheG

is achieved asymptotically. Furthermore, since ZG < Z < W < WG

MlXT '91 J -0.86.

There are several variations and generalizations of the greedy heuristic

for which bounds similar to those of Theorem 5.1 and Corollary 5.2 are known,

see Cornuejols, Fisher and Nemhauser [1977b] and Nemhauser, Wolsey and Fisher

[1978). For example, we can begin with all facilities open and at each

iteration close a facility that gives the largest improvement in the objec-

tive function so long as such a facility exists. A generalization of the

greedy heuristic is to start with the family consisting of all sets of cardi-

nality k, for some fixed k, and apply greedy to each of these (n) initial
;',.

".' sets separately; we then choose the best of the resulting ( n solutions.
ki)

None of these variations or generalizations, however, improve the

worst-case bound of the greedy heuristic. In fact, what is remarkable about

the bound on the greedy heuristic is not its value, but that no polynomial-

time procedure of any degree whatsoever is known for p-facility location

problems that has a better worst-case performance.

*. -'.The salient feature of the greedy heuristic is that the maximum possible

" a.- improvement is made at each step. If this is not done, worst-case perfor-
- ,

mance deteriorates, even if a broader choice of improvements is considered.

An example of such a heuristic is generalized interchan ge, see Nemhauser,

a Wolsey and Fisher (1978). Here we begin with an arbitrary set S . Given

a%.%
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St 'l at iteration t we select any set St such that z(St ) > z(St1),

I .S-1 1 and I -1\StI< I or stop if no such St exists. Thus,
at each iteration, we are allowed to open a facility, close a facility or do

* both so long as an improvement is made.

The worst-case bound of generalized interchange is weaker than that of

greedy. For example, under the conditions of Corollary 5.2, this heuristic

can guarantee only to find a solution of value at least half of the optimum

value. Of course, by starting with a greedy solution, the bounds of Theorem

5.1 and Corollary 5.2 are obtained. Nevertheless, they are not strengthened

by applying generalized interchange. On the other hand, greedy followed by

generalized interchange seems to give good empirical performance, see Hansen

(1972) and Cornuejols, Fisher and Nemhauser (1977b).

The dual solution 7(S) given by (5.1) is motivated by its use in

obtaining a bour.1 on the given primal solution S. Conversely, given - dual

solution that satisfies (4.8), the complementarity conditions (4.14) suggest

considering a primal solution in which x. =0 if 7 (cij ui) + - fi < 0.Z i

Let

J(u) - (j: I (c1j " u) " = 01.

The best solution that satisfies complementarity is obtained by solving

Jia max max ci -
SJ(u) I jeS J j-S f

• 1,..'

;'.p
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but this problem may not be much easier to solve than UL itself. Instead, we

take any minimal set K(u) c J(u) that satisfies

(5.2) max c. max c all i c I.
.jK(u) jcJ(u) 13

r.- j~~~
i  i

Proposition 5.3 Given a u that satisfies (4.8) and ui < max ci
1-jcJ(u) 13

all i c I, and a primal solution K(u) defined by (5.2), let

ki = j{ e K(u): cij > ui}I. If ki < 1 all i ( I, then u is an optimal

set of open facilities.

Proof:

z(K(u)) = c - j fj.
N i CI jCK(u)iil jc(u) i l

If k 0

max c.=u--u i + -(c ui)
jeK(u) 13 1 jCK(u) 13

and if ki -I

max ci - = u + (ci-

jcK(u) 13 1 jcK(u)

Hence, if k 1 all i c I,

z(K(u)) , (c. - u.) - f + u

iCl jCK(u) jCK(u) il

'u ( Z(ci- ui) - f.) + 4 ui

jCK(u) i iI iel

- ui  W(u) by (4.11).
..',i
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In our example, with u - (6 6 4 3), we obtain J(u) * K(u) - (2,3,4}

and (k1,k2,k3,k4 ) - (1 1 1 0). Hence these are optimal primal and dual

solutions of value t u1 * 19.

While Proposition 5.3 may permit us to recognize an optimal solution, it

is limited to those cases in which min W(u) -Z and even then it is still
U

necessary to find an appropriate u and K(u).

Dual Descent

Dual descent is a heuristic that begins with a u satisfying (4.8) and

then attempts to decrease the u Is one-at-a-time while maintaining (4.8),
444

4

see Erlenkotter (1978) and Bilde and Krarup (1977). It is surprisingly

effective, but not fail safe, in finding a u that satisfies the conditions

of Proposition 5.3. This descent approach, with some embellishments, is the

inner loop of Erlenkotter's DUALOC algorithm. The basic descent method

procedes as follows:

Begin with u. - max c. all i c I. Cycle through the indices i I I
I1 e ij

one-by-one attempting to decrease ui  to the next smaller value of c ij

If one of the constraints

(5.3) (cij - uX < fj all j J

blacks the decrease of ui to the next smaller c ui  is decreased to the

minimum value allowed by the constraint. When all of the ui's are blocked

from further decreases, the procedure terminates.

The reason for decreasing ui  only to the next smaller ci4 , rather than

to the smallest permissible value, is to keep the ki  of Proposition 5.3 as

small as possible.

,r:2~.A ~ a tk~AA.AAA..,~*& 4-4. 4' 44. . 4..
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Applying dual descent to our example yields the results shown in

Table 5.1. For the first four steps, each

.U f - ! (cii -u 1

Step _ I
0 8 8 6 4 3 2 2 2 3 3

1 6 8 6 4 3 2 0 2 3 3

2 6 6 6 4 3 0 0 2 3 3

3 6 6 5 4 3 0 0 1 3 3

4 6 6 5 3 3 0 0 1 2 2

5 6 6 4 3 2 0 0 0 2 2

Table 5.1

/ of the ui's is decreased to the second max in the row. Now u, is con-
sidered again, but cannot be decreased because the constraints (5.3) for

j = 3 would be violated. Similarly, a decrease of u2 would violate (5.3)

for j = 2. However, u3  can be decreased; but it is decreased only to 4

because (5.3) becomes active for J - 4 when u3 = 4. Finally u4  cannot

be decreased because of (5.3) for j - 2. This completes the dual descent

with u - (6 6 4 3) and W(u) = 1 ui = 19. Now, as noted above, J(u)
iei

-. K(u) s (2,3,4} and we also obtain a primal solution of value 19.

A possible improvement of dual descent, which is likelier to produce a

primal and dual pair for which Proposition 5.3 applies, is obtained by

modifying the order in which the ui's are considered as candidates to

decrease. In particular, rather than just cycling through the uis, let

Q1 (u) = (J: ciJ - ui > 01. Then if ui is decreased and descent terminates,

m% %..
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ki  jQ(u)j. Hence we choose us next if iQs(u)I _ IQ(u)I for alli
""-" i £ I.

Suppose dual descent terminates with the dual solution u* and we

determine a primal solution given by K(u*) such that Proposition 5.3 fails

to verify optimality. Then there exists an i such that ki > 1. By

increasing ui to its previous value and reapplying dual descent, it may be

possible to improve the dual solution further.

We have sketched all of the basic steps of Erlenkotter's heuristic. An

example in which it does not find an optimal solution to (4.6) is given by

(5.4) f (2 2 2), c 2 ( 2

(2

In this instance of UL, beginning with u0  (2 2 2), dual descent terminates

with u a (0 2 2) and the embellishments don't help. However an optimal u

is (1 1 1) yielding W a 3 and Z a 2. Nevertheless, this heuristic has

performed extremely well on the problems that Erlenkotter has considered.

He reports that in 45 of 48 problems tested, the heuristic found an optimal

solution. To provide the capability of finding an optimal solution and

proving optimality, the heuristic is imbedded in a branch-and-bound algorithm

called DUALOC. Given its simplicity, speed and availability, DUALOC may be

the most efficient way to solve UL. However, it could bog down an hard

problems in which the heuristic bound is not as good as the linear program-

ming bound. Thus one is motivated to develop efficient algorithms for

*solving the strong linear programming relaxation.

* - . . . ) . .. % % | i I- - i I , ' - - - - =
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6. Algorithms and Reformulations of the Strong Linear Programing Relaxation

The strong linear progranming relaxation (SLP) of the uncapacitated

.4. ., facility location problem (UL) is

(6.1) ZLP max f- c i  - jE J', idl jej ji j'

4. -..

(6.2) 1 Yij I all i e I
.oJ ,

(6.3) yij " xj (_0 all i e I, j c J

-- (6.4) Yi > 0, x. > 0 all i C I, i C J.

For general integer programs, a linear programing relaxation must be

used in conjunction with cutting planes or enumeration to obtain an optimal

integral solution. However, for reasons which are barely understood, SLP is

an unusually powerful relaxation of UL in the following sense.

V" Observation 6.1 Very frequently, SLP has an optimal integral solution.

Of course, it is not true that all of the extreme points of the

polyhedron (6.2)-(6.4) are integral. Example (5.4) has a unique optimal

solution with x - (1/2 1/2 1/2) and it is easy to construct infinite

families of objective functions for which the unique optimal solution to

(6.1)-(6.4) is fractional. Nevertheless, randomly constructed objective

functions and the few encountered in practice that have appeared in the

literature strongly support Observation 6.1.

A challenging problem for the combinatorial mathematician is to make

Observation 6.1 precise. For the practitioner, Observation 6.1 means that

4.. ,, ,,., .."."'---.--,?-."-"-.?-. '- ,..-.... . -". .-.... -..- "J."'- .-' 'g°1-2'.. '.'°''- "
', '-
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an efficient method for solving SLP will also be an efficient method for

solving most instances of UL. Even if one is unlucky, a very good upper

bound is typically attained so that a branch-and-bound algorithm should

terminate rapidly.

Even relatively modestly sized instances of UL cannot be solved by a

standard mixed integer programming package that uses SLP as a linear

programming relaxation because of the large number of constraints (6.3). For

example, m - n - 100 yields a problem with more than 10,000 constraints. In

this section, we consider several approaches for solving very large

structured linear programs. We will begin by briefly mentioning two direct

approaches to eliminating the difficulty caused by the large number of

constraints (6.3). Then we will apply some well-known reformulations and

algorithms including Lagrangian duality and subgradient optimization,

Dantzlg-Wolfe decomposition, Benders decomposition and subgradient

optimization on the primal. Connections among those approaches will be

noted. Finally, we will consider a reformulation that involves the reduction

of the matrix C into an interesting canonical form.

Direct Approaches

The constraints yij < xj are generalizations of simple upper bound

constraints in which the upper bounds themselves are variables. It is

well-known how to handle fixed upper bound constraints in the simplex method

without expanding the dimension of the basis to include them. Schrage (1975)

has generalized this idea to incorporate variable upper bounds. He reports

computational results obtained by applying his method to SLP.

'p .. . . . . . , . . . . . . .*1 . . . .",.".'l. -".,.'' ' .. '''.,,:. / '''""'" '..+.'.-, +' ',_,.. -'-".; ... .,. .. ,..,.; ,....... .... , '''';,,6~, r l s # + . " ++-+ ,-. -, +,,,~+-+-f -l i L ll..maklu+ tk imm i, ~,,,,~l
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An alternative is to generate the constraints Ylj < xj as cuts only

when they are violated in an optimal solution to the weak linear programming

relaxation. This idea has been tested by Morris (1978). In the example of

the last section, an optimal solution to the weak linear programming relax-

ation is x2  x3 x4 - x - 114 and y13  y Y 3 4 my45  1. We could

then add the four violated variable upper bound constraints and continue to

solve the linear program.

The direct approaches are primal. Dual methods may be superior for two

reasons. First, if SLP is incorporated in a branch-and-bound algorithm, it

may not be necessary to solve SLP to optimality at every node of the

enumeration tree, i.e. at some of the nodes, a dual feasible solution may

* suffice to bound the subproblem. Second, as we have already shown in the

last section, we can easily generate an integral primal solution from each

dual solution.

Lagrangian Duality and Subgradient Optimization

The Lagrangian L(u) of (4.12) forms the basis of a subgradient

algorithm for solving the dual of SLP. The subgradient algorithm solves the

problem min L(u).
u

The function L(u) given by (4.12) is the maximum of a finite number

of linear functions. Therefore L(u) is piecewise linear and convex. Sub-

gradient optimization [Held, Wolfe and Crowder (1974)] has proved to be a

useful method for minimizing unconstrained piecewise linear convex functions.

This approach is an extension of the gradient method for minimizing smooth,

nonlinear convex functions. Since gradients do not exist at non-differentiable

.-,%*
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points of L(u), the gradient direction is replaced by a subgradtent direc-

tion, which will be explained below.

Given u t , an iteration of the subgradient algorithm generates a new dual

solution by the formula

(6.5) ut+1 a Ut . t8L(ut)

where 8L(ut) is a subgradient at ut and yt is the stepsize. If

aL(ut) - 0, then ut Is an optimal dual solution.

Suppose

L(u) * Z c - fx + u(1 - y)

e jjeJ i;I jeJ

where (x , y4 } are defined in the proof of Proposition 4.2. If the {yi.*

are unique then

(6.6) 6L(u) i  1 - yt all i I

is the gradient of L(u) at u. However if the {yi} are not unique,

then any direction given by (6.6) or convex combinations of such directions

is a subgradient direction. Although a step in a subgradient direction does

4;

..
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not guarantee a decrease in L(u), it can be proved that with an appropriate

choice of stepsize the iterates given by (6.5) converge to an optimal solution

[Polyak (1969)]. Cornuejols, Fisher and Nemhauser (1977b) have solved the

Lagranglan dual by subgradlent optimization and report computational results.

In our example, if we start with u0 a (8 8 6 4), then L(u) 26 and

aL(u) - (1 1 1 1). With a stepsize of y= 2, we obtain u1 - (6 6 4 2)

and L(u ) 19. The solution to (4.13) is not unique; however, the solution

x2 a x4 - 1, x. =0 otherwise and Y12 ' Y22 = Y34 = Y42 = 1, Yij = 0

11
otherwise yields aL(u 1 ) = (0 0 0 0) and verifies the optimality of u

Dantzig-Wolfe Decomposition

For all non-empty R c I. let R 1 if facility j serves only these

clients In the set R and XR = 0 otherwise. If x = 1, facility j yields

a profit of i c j - fj " Thus UL can be reformulated as the integer program
i CR

(6.8) =1 all 1(1
j"J Ri .a

(6.9) X < 1 all j JR I k j  l

R

(6.10) ( {0,1} all R I, j g J.

mo2

I...
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The equations (6.8) state that each client is served by exactly one facility

and the inequalities (6.9) state that each facility can serve only one set of

clients.

We are going to study the linear programing relaxation of this integer

progran where (6.10) is replaced by

(6.11) X R > 0 all R 1, j J.

Proposition 6.2 Let 7 be the optimal value of the linear program (6.7),

(6.8), (6.9) and (6.11). Then 7 = ZLp.

Proof Apply Dantzig-Wolfe decomposition to the linear program (6.1)-(6.4)

with master constraints (6.2) and subproblem constraints (6.3), (6.4) and

xj < 1 all j c J. Substituting the subproblem extreme points into (6.2)

yields (6.8), and (6.9) are the convexity constraints for the subproblems. [I

Before considering an algorithm, we will make some simplifications. If

(c. - f.) > (cik - fk ) , then R = 0 in every optimal solution.
ieR icR
Hence for each R, we need only one variable, say XR with price

dR = cij(R) - f j max( ci  - f.).
icR ((R) -jcJicR

Furthermore the constraints (6.9) are superfluous. This is true because if

R R' * , then (6.8) guarantees that KR + XR' <1i and if R n RI s and

_ .,
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JCR) =j(R') ak. then f > 0 implies dRuR'. dR d R-

Thus we can restate the integer program as

(6.12) Z max 7 d X~

(6.13) 1all i I

(6.14) XR { 0,1} all R _I.

This formulation has 2 M1 variables and m constraints. Curiously, n

does not enter into the size of the problem so that for fixed m, this

formulation can be solved in polynomial-time.

The linear program (6.12), (6.13) and

(6.15) XR>0 all R c I
- .

__-()=jR)=k hnf 0 Implle dlRuR _m21 d,

.We n s ifanyo the s otifor be dn at 1tfoate p by rog rac(6.16) Z. max .dp R. f

',. £R

---. Wei norseuifatiny the onbasiabclus ave a ostives Cri. lThis

Scanoe ne ante interathio p by s og oha for eahix Jted sutohie

>.4,

' (6.16) t. ma (c10 -l

• , an besolve by lumn enerain. Sups we)Y beifwt mclun,

R= i} i- ,. .an th *da so*tio is..*. u
0 .ma~ - fj) al

4 . . ...%
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(6.17) Y xj < 0 all i e I

(6.18) yij (0,1}, xj c (0,1} all i c I

sinceiR (c i " uP) - f is the price of variable XR. We obtain
i R ij J

t2= ( p (ci  " u+ - f )  "  If t? = 0 all j e J then the current
solution is optimal. For each k such that t P > 0, let R be any set

satisfying {i: Cik - u > O Rk _ {i: c - u > 0. We now add to the
ik-up > 0_ k -i

linear progran the variables for all k such that tp > 0.
Rkk

Garfinkel, Neebe and Rao (1974) have obtained computational experience with

this type of algorithm.

An important feature of this approach is that both lower and upper bounds

on ZLP are obtained at each iteration. By primal feasibility, ZLp > uP;

and from (4.12) we see that ZLp (J t? + i up Z W(uP). Moreover, as
LP Jej ici

well as obviously being a primal method, it is also a dual method that can be

compared with solving the Lagrangian dual by suboradient optimization. Here

the ui's at each iteration are determined by solving a linear program, while

in the previous method the dual variables are determined by moving in the

direction of a subgradient of the function L(u). An advantage :f the column

generation approach is that its lower bounds are determined in a less ad hoc

fashion. Furthermore, whenever the linear program 'ias an inteqral solution a

feasible solution to the integer program is also found.

In our example, we start with an initial basis consisting of the four unit

columns R (i}, i 1 1,...,4 with objective coefficients J " 2  6,
R 

R
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dR 4 and dR 1 1. This yields the dual solution u0 = ( 6 4 1).
3 4

Solving the subproblems, we obtain to  (0 2 0 1 0 0) and thus

17 < ZLp < 20. We generate two new columns R5  (1 2 4} and R6 = (3 4)

with objective coefficients d5 : 15 and d6  6. The next master linear

1 1 1program yieldr the primal solution X X 1, X 0 otherwise and the
R 5 R3 R

dual solution u = (6 6 4 3). Now tI = 0 all j c J so that the primalJ
has been solved. In terms of the original variables, we have x2 = x4 4 1,

x. = 0 otherwise.

Primal Subgradient Algorithm

With fixed x.'s, 0 < xj ( 1 all j e J, j x. > 1, SLP is

(6.19) ZLp(x) =- fjxj + max cLP:.-.., j IJ i j yi
C CEI jeJ

(6.20) y Yi - I all i eI
jCJ

(6.21) yi j x. all i I j J

(6.22) yij >0 all i £ I, j J.

Let Vi(x) be the profit from the ith client. Then (6.19)-(6.22) decomposes

as follows

(6.23) ZLP(x) = fjx. + j Vi(x)j J i

where for each i . I

':.-.
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(6.24) Vi(x) a max J ciYi

(6.25) ! y I.5. jJ ,]Y

(6.26) yij xj all j J

(6.27) yij > 0 all j 3.

This linear program can be solved greedily. Let c > cJ > _

p-1
., Then = k - 1,...,p - i,y ij , = 0
n" YiJk a Xjk k=1 Xjk YkJk

p-i p
otherwise where xk < 1 < x

k=1ik k=1 k

The dual of (6.24)-(6.27) is for each i c I

(6.28) Vi (x) = min ui + x
jcj

.-5'i (6.29) ui + wi> ci all i J

(6.30) wij >0 all j c J.

To solve (6.28)-(6.30), observe that wij = (ci. - ui) and that it

sufficies to consider ui  {Cil,...,Ci}. Hence

(6.31) Vi(x) = min(cik + E xj(cij - cik) )  all i c I.
kcJ jJ

5-.
'-,

5-5S ' : ; ' ; K ;;;; ,. -, .. ' . / - - -. , ' - . - . '- '' . - .' - .. . , -- ' . . . . . . - . .- -.
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Since V.(x) is the minimum of a finite number of linear functions, it

is a piecewise linear and concave function. Therefore ZLP(x) is also

piecewise linear and concave and

ZLP max ZLp(X)

(6.32) a< x.<1 all j J

xj>1
JEJ

can be solved by subgradient optimization. If there is a j such that

cij - f. > 0, the constraint 7 xj > 1 is superfluous. If not, we
• 3j J --
can add a constant M > min(f. - . c.) to some row of matrix C without

j(J lEI

changing the solution while assuring that 7 xj > 1 will be satisfied by

any optimal solution. In the remainder of the chapter, we assume that

xj > 1 is not needed.
jej -

A subgradient of ZLP(x) at x is of the form

(6.33) 8V(x). i I (c " c p) " f. all j J

where p is determined from a solution to the ith subproblem (6.24)-(6.27),

i.e. c umin (c> 0. Note that because of the bounds on the vari-i . ip J {ij: Yij

ables, if x= 0 then 3V(x). is replaced by (c1j - c. f-
4 ieI 3j i

and If x. - I then aV(x). is replaced by min(O, i (c " c fS ij ip

%
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Cornuejols and Thizy (1982b) report their computational experience in

solving (6.32) by a subgradient algorithm.

The results of attempting to solve (6.32) by subgradient optimization for

our example are summarized in Table 6.1. An optimal solution to SLP is

obtained at iteration 3, but the subgradient formula (6.33) is not adequate to

verify it.

iter- x V(x) Z LP(x) aV(x) step
ation size

0 0 1 1 1 1 0 8 8 6 4 17 -3 -2 -2 -2 -3 -3 1/4

1 0 1/2 1/2 1/2 1/4 0 7 7 9/2 3 18 -1 1 0 1 -1 -1 1/4

2 0 3/4 1/2 3/4 0 0 7 15/2 21/4 11/4 37/2 -1 1 0 -1 -1 -1 1/4

3 0 1 1/2 1 0 0 7 8 6 3 19 -3 -2 0 -2 -2 -2

Table 6.1

Benders Decomoosition

An alternative way of using (6.23) and (6.31) is to formulate the linear

- -program

(6.34) ZLp -max " Vi - - f.x.
iLP jeJ j

(6.35) V. - - cik x. < Clk all i € I, k £ J

(6.36) 0< xj < all j J.

,.'

a..'
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This is precisely the linear program that arises when applying Benders

decomposition to SLP. But now we have mn constraints of the form (6.35).

However, we can think of these as cutting planes and generate then only as we

need then.

In particular, suppose we have only a proper subset of the constraints

(6.35). We solve the relaxed linear program and determine an optimal

solution (xq,vq). Now we use xq  in (6.24)-(6.27) to determine Vi(x'()

all i c I. If

(6.37) Vi(x
q ) V9 all i 1 I,

then (xq,Vq) satisfies all of the constraints (6.35) and xq  is an optimal

solution. If not, each i for which (6.37) is violated specifies a violated

constraint of the form (6.35). These are added to the linear program and we

continue.

In our exanple, we begin with the constraints (6.35) determined by the

second maximum in each row, i.e., V1 - 2x3 j 6, V2 - 2x2 < 6, V3 - x4 < 5,

and V4 <4. A solution to the linear program is V = (6 8 5 4) and xI

(0 1 0 0 0 0). Then by solving (6.24)-(6.27), we obtain V(x ) = (6 8 0 3)

and generate the constraints

.9.

*4.,

: ," ",". ":,".T'" ,"., 7 ;," "" . . ..v... . '.' - .. " "...". . . . .."..v -". . "-".. .'. ..'... ".,'.*., ,C.0 .C r,
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V3 - 5x1 - 3x 3 - 6x 4 - 0x5 <0

V4  -x 5 -x 6 <3.

Now we obtain the solution V2  (6 8 6 3) and x2 . (0 1 0 1 0 0). Since

V(x2) = (6 8 6 3), all of the constraints of (6.35) are satisfied and x2

is an optimal solution.

Magnanti and Wong (1977) have used a variation of this approach and have

developed stronger inequalities in an attempt to impose integrality on x.

Canonical Reduction

We now develop another formulation that involves the disaggregation and

aggregation of clients, see Cornuejols, Nemhauser and Wolsey (1980). The

aggregation of two clients 11 and i 2 means to replace clients i1 and

12 by a single client i such that

(6.38) c ij , c 1 1j + c 2j  all j £ J

The disaggregation of client i into two clients i1  and i2 means to

replace i by two clients 11 and i2 such that (6.38) holds. While

aggregation is uniquely defined, disaggregation is not.

P , ,..p% ... ,. . .. .... .. : .. . .. , .,: . . ,% * ' 1., _ .: . .< ., . . ... . .,,..'.': .
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In general, aggregation yields an underestimation of profit and disaggre-

gation overestimates. This is true, because if (6.38) is satisfied tie greedy

solution to the linear program (6.24)-(6.27) implies Vi(x) < Vi (x) + Vi 2(x)

for all x such that 0 < x < 1. We say that aggregation or disaggregation

is valid when for all x such that 0 < xj_< 1

(6.39) Vi(x) - Vi (x) + Vi (x).

Proposition 6.3 Let sk be a permutation of {1,2,...,n} such that

• '"-"Cksk(1) >. Ck5k(2 > ... > cks
' k - 2) - - Sk(n).

a. If i1 and i2  have permutations such that Si1(j) 2i2(J), j ..,n

then (6.38) is a valid aggregation.

b. If i, il and i2  have permutations such that si(j) = si

j = 1,...,n then (6.38) is a valid disaggregation.

. : *Proof a. If s.J --s.. for all j and rows i1  and i2  are aggre-11(3) =1s2(3).12

gated by (6.38), then si(j) = Sil(j) - si2(j) j = 1,...,n. Thus

the greedy solution to (6.24)-(6.27) implies that (6.39) holds.

'a b. The proof is similar to that of a. and is left as an exercise. C

The following proposition shows how a row can be disaggregated.

Prooosition 6.4 Suppose cis( 1) > > Cis(P1) isi(P) . > isi(n)

Then for j ,,..,p - 1

* !:* * ' ** **)?.%!. ' ~ .' . . . - '- ' . ' '
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i C1 IS (J) = Cs(p) and Ci 2s (j) Ctsi(j) - Ct s(p)

and for j p,.,n

iIC Is, (j) - Cis (j) and cis 2 ) -j

is a valid disaggregation of row i.

Proof The condition of Proposition 6.3b holds. r

We can apply Proposition 6.4 recursively to disaggregate a row i into

at most n rows, t1 ,..., n with the following properties:

(1) c {O,r1 it for t a 1,...,n, (ii) ri > 0 for t > 1, (iii)

c 3 - r, for - 1,...,n, (iv) cit j x 0 implies c1  - 0 for

"- 't - 2,...,n-l.

To do this, suppose cis i (q )  cis() for some q ( n.

Apply Propositton 6.4 with p a q. This yields

ctIsCI(j) -Cst(q), j

.isj(j) - Cis i (q) 1 - 1,...,q - 1

ci  (j) "2si2

0 .

Row 11 is in the desired form and if Csi(J) a Ctsi(J~l), j 2

so is row . Otherwise let I be the largest value of j for which
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cis i (i-i) > Cls (I)" Now apply Proposition 6.4 with p - A to disaggregate

row 12* Here we refer to the two new rows as i2  and i3. Thus

Clsl(,t ) - Csi(q) j ,...,q -

C15 (,j)" Cj 2si 2 (

0 j q ,...,l

. Cisl(j) -c si(-) i 1 .,..... t 1

i ci
S3si 3(j)

Row i2  is now in the desired form and we now disaggregate row i3 if

necessary. Since at each step, the row to be disaggregated has at least one

more zero than the previous row, the procedure takes at most n -i steps

and yields at most n rows each having the desired property.

Consider

(c i c12 c13 c14 ) - (4 2 2 -1).

We obtain

(c..1 ci 1 2 ci1 3 ci 1 4) = (-1 -i -1 -1)

and

(ci 21 c122 ci23 ci24 ) = (5 3 3 0).

.:
, " ", '. . . . . , - . , ' ' '. . . . . . Ia . '. - - ] ; - " ," , " . " . ' " " . -. ' , .' - , - , .' . .
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Disaggregating row i2 yields (3 3 3 0) and (2 0 0 0). Thus a client

represented by the row (4 2 2 -1) can be replaced by 3 equivalents clients:

(-1 -1 -1 -1), (3 3 3 0) and (2 0 0 0).

Suppose each of the clients i e I is disaggregated in this way. Now we

may obtain pairs of clients say it and k such that c 1 * 0 and

cp 0 if and only if j e T. By Proposition 6.3. a., these two clients

can be aggregated into a single client with profit c tj + C pl for j e T

and 0 profit for j I T. Finally, a client whose profit is constant for all

j e J can be eliminated from the problem since this client produces the same

profit for all feasible x.

To summarize this discussion, we can transform the matrix C Into an

equivalent canonical matrix R containing at most min(m(n-1),2n-2) rows.

Each row of R represents a set T J\* and there is a profit rT for all

j T and a profit of zero for j T.

In our example,

!6 6 6 6 0 6 lin

(Client 1(1
6 6 6 0 6 6 lin

1 client 2
0 2 0 0 0 0R-
3 0 3 3 3 0

2 0 0 2 0 0 client 3

24 2 2

0 1 0 0 1 client 4
I0 0 0 0 1 1,

i.



47

We will now use this transformation to obtain a reformulation of SLP.

Given x, 0 < x. < 1 all j c J, the problem for the client that represents

the set T that is equivalent to (6.24)-(6.27) is

VT(x) - rT(min(7 xj, 1)) = rT - rT(1 -I':,'::jfT j9j;T x i

Let '[T be the fraction of client T not served. Then

VT(x) = rT + max(.r Tr%)

" " > I- 7 x;
•T . 1-

tT> 0.

Let be the collection of subsets of J that are represented in the profit

matrix R. Then

(6.40) Z r + max(- r T -. ' fjx.)6.0ZLP TerT T 7T jejO~

(6.41) + xj >11 all T e T
jT -

(6.42) nT > 0, xj > 0 all T e T, all j e J.

*. We rewrite the objective function as

.- ,..

'5 h-. ,. . *,

.*SS *.t°*j * .

• ( , : . . ,.--.,-v \.- ;'. a.:.. ... ; .. :.'.?-- .'.='.'-.;:... ,...-.'
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(6.43) Ztp * ZLp - ? rT - - min(T rTnT + ?  f x.)
TJ TT jj

The dual of (6.41)-(6.43) is

(6.44) Z* - max T uT

Te T

(6.45) 7 u all j e J

(6.46) 0 <uT <rT all T T.

The linear program (6.44)-(6.46) has at most m(n-1) variables and n

constraints plus upper bounds on the variables. It is the most compact

linear programming formulation we know and has the structure of the linear

progranning relaxation of a set packing problem. In our example, see the

matrix R given above, there are only 10 variables and 6 constraints other

than upper bounds. In comparison, the original linear programming

formulation of SLP ((6.1)-(6.4)) has 32 variables and 28 constraints. In

experimenting with some k-median problems, Cornuejols, Nemhauser and Wolsey

(1980) have observed that when the simplex method (with upper bounds treated

implicitly) is applied to the various linear programming formulations, the

formulation (6.44)-(6.46) was by far the best one in terms of simplex pivots

and running time. In addition, the formulation (6.44)-(6.46) provides a nice

interpretation for the dual descent heuristic given in Section 5. We leave

this as an exercise.

,"S.

b~p .- ,o- . % . % "% - % • . ° . - . . ... . . •. , • A . . %. ... . . .
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Suma ry

This section has emphasized the description of exact algorithms for the

solution of SLP. These algorithms, and effective heuristics for the dual,

such as dual descent, can be viewed as subroutines that must be embedded

in within a branch-and-bound code based on enumeration of the 0-1 variables x ,
-4 '..1

A second viewpoint is based on a specific MIP (mixed integer programming)

formulation that can, in principle, be tackled by any general purpose mixed

" integer programming package. Here candidates are the original formulation

(1.1)-(1.4), the Benders formulation (6.34)-(6.36) with xj e (0,I) all

j e J, and the new canonical formulation (6.40)-(6.42) with x. E {0,1) all

j J. Such formulations are also amenable to treatment by algorithms other

than branch-and-bound--see for instance the cutting planes for (1.1)-(1.4)

-developed in the next section. However, attempting to fit any of these

. formulations into a general purpose package leads to difficulties of problem

*size since each of these formulations involves O(mn) constraints and/or

variables.

Having been inundated with various heuristics and algorithms, the reader

has the right to ask for a recommendation on the appropriate method to use.

Unfortunately there is no simple answer.

Among the special purpose branch-and-bound algorithms DUALOC appears to

be the best. It is a generally available easy to use FORTRAN program that is

very fast on most problems.

.- W
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If one insists on solving the strong linear program to optimality, which

may be necessary for the harder problems, solving the Lagranglan dual by

;. subgradient optimization provides an easy to program and relatively fast

approach. If the simplex algorithm is to be used, the linear program

(6.44)-(6.46) has a significant advantage in size, and limited computational

experience suggests that it is best in terms of time and pivots.

The main advantage of using a general purpose MIP code is that

complicating constraints create no difficulties, whereas a special purpose

code becomes unusable. In addition, work is in progress on general purpose

codes which will be capable of working with the compact formulation - yij -

mx. and generating violated variable upper bound constraints Yij < xj as

needed; see Martin and Schrage (1982) and Van Roy and Wolsey (1983). This

should permit such codes to handle medium sizedUL's as general MIP's.

-.9

.
,.,

5-
I

-p°
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7. Polyhedral Results

Extreme Points of SLP

We have observed that the strong linear programming relaxation

m n n
max ! cijyi - fjxj

l=1 j=1 j-1

subject to

*C- yi 1 1= .. ,m

(7.1)

0 0  x < 1 i = 1,...,m and j 1,...n,

very often has integral optimal solutions. Although this phenomenon is not

well understood, some properties of the polytope (7.1) are known. When

m < 2 or n < 2, it has been shown by Muckendi (1975), Krarup and Pruzan

(1983) and Cho et al. (1983) that all the extreme points of (7.1) are

integral. In fact, the constraint matrix is totally unimodular in that case.

'. . However, even when m = n = 3 the strong linear programming relaxation may

have fractional optimal solutions. For example, when C = 0 1 and f = 1

for j = 1,2,3, we have remarked previously that x . 1/2 for j = 1,2,3

and yij = 1/2 for i * j, 0 for i j, where i, J 1,2,3 is the unicue

optimal solution.

,,,, • ,,

", *",

'-'1' -, . ._ , '' , - . -_ ,. . .. .. ... . .,.- - -.. . ' .. . . - . . , - - . .
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The fractional extreme points of (7.1) are completely characterized by

the next theorem. For a given non-integral solution (x,y) of (7.1) let

J (j € J: 0 < xj < 1} and

I= ( i I: Yij = 0 or xj for all j and yij is fractional for some j}.

Let aij =1 if yij >0 and 0 otherwise, and denote by A the I I x Pi

matrix whose elements are aij for i e 1, i ' J1.

Theorem 7.1 [(Cornuejols, Fisher and Nemhauser (197704]. A fractional solution

(x,y) of (7.1) is an extreme point of (7.1) if and only if

(i) xj = max y ij for all j E J

(ii) for each i e I, there is at most one j e J with 0 < yij < xj

(iii) the rank of A equals IJ11 .

The 3 conditions of this theorem are easily verified for the example given

above.

Since the polyhedron defined by (7.1) has many fractional extreme points,

the type of objective function that is optimized over this polyhedron must

play an important role in the attainment of integral optimal solutions.

Frequently, C = (c ij) is defined over a network with the property that
= -di(tij + q.) decreases as a function of i, the further i is from

ij= dtj+ j

j in the network. (I.e. if i' is on the shortest path from i to j

in the network then cij i c i j ). The influence of this property on the

solution of SLP for tree networks will be discussed in Section 8. For more

general graphs, it is an interesting open question.



When C (c .) is a general 0,1 matrix and f I all 53 J, UL

is the problem of finding the minimum number of columns that cover all the

rows of the maxtrix C. (A set S of columns covers row i if c. - 1
13

for at least one j e S.) This problem is known as the set covering problem

and often has fractional optimal solutions.

Some valid inequalities for UL that remove fractional extreme points of

the SLP polytope are given in the next theorem.

Theorem 7.2 Cho et al. (1983). Let B be a k x k nonsingular 0,1 matrix

such that 81 e > 0, where e is a column vector of ones. Index the rows

and columns of B by [k _ I and J J where Ilk1  IdkI k Then

"-. 2 bijyij - ' j L L- eT8'e-
i(Ik JeJk JeJk

-'. .. is a valid inequality for UL. It cuts off at least one fractional extreme

point of the polytope (7.1) if eT B1 e is not integral.

For example, if B =1 0 1 we generate the constraint y + y +

(1 1 0 12 13

1 * 2+31 + y32 - x 2 - x3 ( 1, which cuts off the fractional

extreme point given above.

Conversely, it is easy to show that the family of valid ineaualities
,. de ined in Theorem 7.2 cuts off all the fractional extreme points of the

polytope (7.1). However, in general new fractional extreme points arise.

We now turn to the identification of valid inequalities for UL that

•efine facets of the inteqer polytooe.

t -. . ... X

.4 .. ..- . ' . . . . .z a . - .- . -- - -j , - - ' " " . . . - - . + . . . . . a'. ".. - . - ... . . -. - -
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Facets of the Integer Polytope

Let Pm,n be the polytope defined as the convex hull of the integer

solutions to the system (7.1)

n 1- i =  i = ,. ,

0 < < xj < 1 i = 1,...,m and j a 1,...,n

x,, Yij ( 0,1) i = 1,...,m and j = 1,...,n.

A set of k points wO, w1 ,..., wk are affinely indeoendent if the

k vectors wI - wO,...,wk - w are linearly independent. A polytope has

dimension k if it contains k + 1 affinely independent points but not

more. An affine space is the intersection of hyperplanes. The smallest

affine space which contains a polytope P is called its affine hull. The

polytope P has dimension mn + n - m and affine hull

nn mn
{(x,y) c R x R : y . I for i i,

A face of a polytope P is a set F = P n (x: ax a b} where ax < b

is satisfied by every x e P and ax < b for at least one x c P. The

inequality ax < b is said to define the face F. Any face of a polytope is

itself a polytope. When its dimension is one less than that of the polytope

P, the face F is called a facet. To describe the polytope P by a linear

system, it suffices to have a description of its affine hull and one defining

inecuality for each facet of P.

M s o w - .2- - , -.- . . . - .. -. - - .- .- ° -.- -.- .. - ... ... .... . . .-. . . .. .. . - . • - - -.



55

,.N If such a description of P were known then, in principle, UL could.. m,n

be solved as a linear program since the extreme points of P are
m,n

". precisely the feasible solutions of UL. However, a complete linear system
defining P is not known explicitly. Even if one were, only relevant

m,n

portions of it would be generated to solve an instance of UL, i.e., the

facets of Pm,n would be used as cutting planes in the spirit of Padberg and

Hong's (1980) and Grotschel's (1980) work on the traveling salesman problem.
Whatever the algorithmic use of a partial linear description of P

-~ m,n

the first step is to identify some of its facets.

Theorem 7.3 The following inequalities define distinct facets of P: "i m,n

(i) i jx for all i I, j J

(ii) Yj > 0 for all i 1, j J

(iii) x.. < 1 for all j J.

%-

These facets are called the elementary facets of Pmn* The next theorem

provides a necessary and sufficient condition for an inequality with coeffi-

cients of 0 or 1 to define a facet of P

Assume that I' I and J' J are two nonempty sets and that

B -(b -) i I', j J' is a 0,1 matrix with no zero row. Consider the

inequality

0.9,.

4 ,,,...,.. - -.',-,' ..,...-,< .'.'.'. .. . .. . -,,.. . . ., ..-,% ,..-,. , . ., .-. ..,.,..-.. . . . . , . -,.,. , ,

4'



.- F 1- -3.011 WS -5- -7. 01A t p ~- . * *~

56

(7.2) b - x r.

Define the graph G as follows. It has a node associated with each

variable yij' i e 1, j t J, and xj, j e J. We will use the same notation

for a node and its associated variable. For all i c I and j t J, the

node yi3  is joined by an edge to the node x. and to every node Yik for

k j.

Let N' be the set of nodes {yij} i ( I', j e J' a {x.} j c J' and let

G' be the subgraph of G induced by the node set N'. Given a graph H we

denote by a(H) the maximum size of a stable set in H (a stable set is a

set of mutually nonadjacent nodes). Finally, an edge e of H is critical

if a(H - e) > a(H), where H - e denotes the graph obtained from H by

removing the edge e.

Theorem 7.4 [Cornuejols and Thizy (1982a)] The inequality (7.2) is a facet

of Pm,n if and only if the following set of conditions is satisfied

(1 ) r - (G ) - Iii

(ii) G' is connected,
(iii) for every i t [', j e J' such that b1j - 1, the edge (xj, yij) is

critical,

(iv) for every j, k J', there exists a sequence of critical edges
(Yilj' Yil~l) ' (Yi2rl -' -' )l~s 'jt 1 ' Yi )(Yjii Yii Yi2119 Yi 212 ) '" -(Yi s-lls. 2 ' Yi 1 S1) YsI-, 0

(v) for every i e I, j i J such that y @ N', the inequality a(G') <

z(G") is strict, where G" denotes the subgraph of G induced by

N'-'. : l

-p" " , " , - ' " . " , " . - . - - , , . ' " ' - • ' ' ' . r " " " ' ' ' " ' , ' ' ' , ' " " " - , , ' , ' " ' ' _S " ' ' ' " " " " " " ' ' " "

-a. l i . . . , /
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These necessary and sufficient conditions can be used to prove the next

theorem, which provides constructively a large class of facets for the

'." uncapacitated plant location polytope.

For 2 < t < .t < n, define B , (0t) as a matrix with (1) rows and
S -

. .a columns whose rows consist of all distinct 0,1 vectors with t ones

and x - t zeros.

Theorem 7.5 [Cornuejols and Thizy (1982a)] For any pair of integers 1 and t

- such that 2 < t < I < n and (< m, and any sets V c I, X c J such that

: I =.1
,  and ,, I, the inequality

it " ~ xj <1 + t- -i. .: iI'; 1 j J' ld

defines a facet of P

For example, take t = 2, .t =3, B23  0 , and P V

. {1,2,3}. According to Theorem 7.5 we get the facet

Y12 +Y 13  Y2 1 + Y23 + Y31  Y32 -x -x 2  - -x3<1,

which is identical to the valid inequality of Theorem 7.2 that we obtained

above with B - B

Other facets obtained by lifting odd holes or circulant matrices can be

found in [Cornuejols and Thizy (1982a)]. Additional material can be found in

Cho, Padberg and Rao (1983).

-_- '..2'
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8. Polynomially Solvable Cases

By a special case of UL, we mean a problem of the form (1.1)-(1.4) all

of whose instances are described by a subfamily of objective functions (C,f)

In this section, we consider two special cases of UL that have the following

significant properties.

1. SLP always has an integral optimal solution

2. The problem can be solved in polynomial-time.

A. Economic Lot Sizing
There is a demand d, in period i, i z 1,...,n. The fixed cost of

producing in period j is fj. > 0. The variable production cost is pj.

The variable storage and backorder costs are c. > 0 and c >0 respec-

tively. 'In UL, yij now represents the fraction of the demand of period i

produced in period j, and xj = I if and only if there is production in

period j,

cij = -(pj + c+ +...+ cTl)di  if i > j

_' and

=,, -(p. + c. +...+ c )d. if i < j.

B. The Tree Location Problem

Let G - (V,E) be a graph with node set V and edge set E and suopose

that G is a tree, i.e. there is a unique path in G between each pair of

nodes (G is connected and acyclic). Here the nodes represent both clients

and facilities. The cost of opening the jth facility is fj > 0 all j c V.

Associated with each edge e e E, there is a given non-negative distance. The

4"
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distance between nodes i and j is dtj = sum of the edge distances along

the unique path between i and j, for all i, j € V. There is also a

non-negative scaling function wt associated with each node i. Let c

-wtd ij , i, j e V, i * j and cii a 0 all i g V.

The induced subgraph of G generated by Vj E V is the graph G. =

(Vj,E.) where E i- {e e E: both end nodes of e are in V G. is said

to be a subtree of G if G. itself is a tree.
3

Theorem 8.1 [Kolen (1982)1 There is an optimal solution to the tree location

problem in which the set of open facilities S c V is such that for each

j f S, V. = {e V: node i is served by node j} induces a subtree.

Moreover, this solution is also optimal to the linear programming relaxation

of the tree network problem.

A similar result applies to the lot sizina problem. Consider the tree

G = (V,E) where V = {1,2,.o.,n} and E a {(i,i+l): i = 1,...,n-1}. Here

A G is simply a path from node I to node n so that V' V is a subtree

* or a path if and only if V' - i, il1,...,k} for some i and k, 1< i < n

and k > i.

Theorem 8.2 CKrarup and Bilde (1977)) There is an optimal solution to the lot

sizing problem in which the set of periods having positive production S a V

is such that for each j c S, V {i E V: period i is served by production

in period j} induces a path. Moreover, this solution is also optimal to the

linear programming relaxation of the tree network problem.

The fact that an optimal solution to these problems induces subtrees that

partition V is not surprising. In the tree location problem, suppose that

FN_4)
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node i is on the path joining nodes j and k and node j serves node k

but not node i. Suppose node i is served by node j' * j. Then the cost
from this part of the solution is djk + f + dil 1 + fj,. If instead, node

is served by node J, the cost is dji + djk + fj + f...

Thus if dji < dj i, we can serve I and all nodes after i that are

being served by j' without increasing the cost. This reduces the number

of subtree violations by one. Otherwise dji > dj,i, which implies

djk dji + dik > dj. i + dik - djlk ,

q."

This inequality implies that the solution in which j' serves k and only

nodes after k that are currently being served by j costs less than the

original. It also reduces the number of subtree violations by at least one.

A similar argument proves the result for the economic lot sizing problem.

Both of these results suggest that the ability to partition the solution

- into subtrees is crucial and leads us to consider the.following generalization.

C. The Tree Partitioning Problem Given a tree graph G a (V,E) and a node by

node matrix with elements yij all i, j e V, let the weight of a subtree

Gj a (V.,E.) be w(G) - max (l" Yik). Find a partition of G into sub-
keV iv k

trees such that the sum of the weights over all subtrees in the solution is

maximum.

.JI " # $ . ' , . ° . - . " " - • " . " J , ' • , " , " . ° , " ." . • "" • . - . - • - • " -
l °
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To model the lot sizing problem as a tree partitioning problem we take

... Y -(f. + pd)
yj ,, pj cj

Yij -(p4 + C + 0.0+ c 1 )di if I > j

yij -(p4 + c +... ct+4 )d, if i < j.

To model the tree location problem as a tree partitioning problem we take

yjj= -f3  and yij - "wid1 j if i * j.

We now formulate the tree partitioning problem as an integer program in a

manner that establishes its connection to UL. If j* e V. is such that

arg max ( " Yik) - j*, we say that j* is the root of subtree Gj, Let
keV. iV.

Yij= 1 if i e V is in a subtree rooted at j and Y = 0 otherwise.

Then the tree partitioning problem can be formulated as

(8.1) max YijYlj

(8.2) yi= 1 all i V

(8.3) Y -j yij < 0 all i, V, j EV such that il

precedes i on a path from j to i

(8.4) Yij (0,1} all I, j E V.

.. .*= "o*

% %- :~' . , ~ .* '
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Constraint (8.3) guarantees that if j is the root of a tree that contains

i then the tree must also contain '. Constraint (8.2) guarantees that each

node must be in exactly one tree.

The linear programming relaxation of this integer program is obtained by

replacing (8.4) by

(8.5) yij ) 0 all i, j s V.

Theorem 8.3 [Barany, Edmonds and Wolsey (1983)] The polyhedron defined by

(8.2), (8.3) (8.5) has only integral extreme points. Hence for any objective

function (8.1) the solution to the linear programming relaxation is integral.

This model for the tree partitioning problem resembles the model (1.1)-

(1.4) for UL if we think of the yjj's as xj and replace (8.3) by (1.3).

In fact, we can represent solutions of UL as a collection of subtrees that

partition a graph G, but unfortunately G is not a tree. In the graph of

Figure 8.1, V1  represents the set of clients and V2 the set of facilities.

, *
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.-

V1  V2

Figure 8.1

A solution to the problem is a set of subtrees, each of which is rooted at

a node in V 2. The edges from the root of a tree to nodes in V, (solid

edges) show the clients being served by the facility that corresponds to the

root. A node in V 2  that is not a root corresponds to an unused facility

(dashed edges). We set -Yij = c1j for i e V 1  and j V V2. To eliminate

the possibility of nodes in V 1  being roots we set yj -M for *j e V1

(M is a large positive number) and to represent the fixed costs we set

'Y.. , -f.i for j e V 2. Finally to accommodate unused facilities we set

Yjk = 0 if j and k are in V 2.

We close this section by giving an 0(JV j) dynamic programming

algorithm for solving the tree partitioning problem. Another very general

* * dynamic programming algorithm for location problems on trees can be found in

Megiddo, Zemel and Hakimi (1983).

%'
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Given the tree G (V,E) we choose an arbitrary root r. This induces

a partial order on V. For all v c V, let V(v) = {t: v is on the unique

a. path between r and t} and S(v) - (t: v is the node that precedes t on
the unique path between r and t}. Let Tv  be the tree induced by V(v)

.- and g(v) a optimal weight partition for the tree TV.

The idea of the algorithm is to calculate g(r) recursively by deter-

ming g(v) from the g(w) for all w c S(v). A node w is said to be a

leaf of Tr  if S(w) = • Note that we can begin the recursion with g(w) =

SYww for all leaves. Before giving the general recursion equation, we need

- '-, one more definition. Let gu (v) = optimal weight partition of Tv  when v

is served by node u and u may not necessarily be an element of V(v).

Then

(8.6) g(v) = max g u(v)
ucV(v)

and if w is a leaf of r

(8.7) g (w) = Ywu for all u e V.

V Now suppose we are given gu (w) all w c S(v) and all u c V. The calcu-

lation of gu (v) divides into two cases as shown in Figure 8.2

a'.

'p2
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S(v) S(V

Figure 8.2

If u V(v) or u =v and u serves v, then u will also serve

w c S(v) if q u(w) > g(w). Hence

(8.8) gu(v) = + U +max(g U(w)1g(w)}.
wC S (v)

If u c V(v)\(vl, then u c V(w*) for some w* c S(v). Hence if u serves

v then u serves w*. Thus

(8.9) gu(v) = vu m rax~g U(w), ](w)} + UW*
wc6(v)\(w*}

An _Ex amolIe

We consider a tree location oroblem on the araoh of Figure 3.3. e

numbers on the edges are the
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(-1 (1,6)

3

.1~ (2,)
~(2,

(1,7) 3 (2,8)

Figure 8.3

. di 's and the pair of numbers adjacent to the nodes are (wi.fi) all

i V. Let yjj = -fj all j V and Yij = -widij all i * j V.

Hence we obtain the matrix

-7 -4 -3 -7 -6

-8 -4 -14 -6 -4

-6 -14 -11 -20 -18

-7 -3 -10 -6 -5

-12 -4 -18 -10 -8

For w = 3,4,5 the bottom 3 rows of the matrix y give gu (w), see (8.7).

For node 2, (8.8) and (8.9) yield

gl(2) 2 + max(g 1 (4),g( 4)} + max{gl(5),g(5)}

-8 + max(-7,-6) + max(-12,-8) = -22

g2(2) = -4 + max(-3,-6) + max(-4,-8) = -11

g3(2) - -14 + max(-10,-6) + max(-18,-8) = -28

g4(2) Y24 
+ max{g4 (5),g(5)} 

+ g(4)

, -6 + max{-10,-8} + (-6) a -20

g5(2) = -4 + max(-5,-6} - (-8) = -17.

| .1
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Hence

g(2) max( 2 (2),g 4 (2),gS(2) = max-11,-20,-171 92 (2) -11.

7 For node 1 we obtain

-gl(l) a -7 + max{-22,-11} + max{-6,-11} -24

a21 -4 + max(-14,-11} + (-11) = -26

93(l) = -3 + max{-28,-11} + (-11) = -25

g4 - -7 + max{-20,-11} + (-20) = -38

g5(1) =-6 + max{-18,-11} + (-17) =-34

Hence g(1) =gl(l) = -24, where g,(1) -= + g(2) + g1(3).

Thus node 1 serves itself and node 3. Since g(2) =g(2) 4

92 4) 92 g(5), node 2 serves itself and nodes 4 and 5.

*% %
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9. Submodularlty

As defined at the outset of this chapter, UL is the combinatorial

problem

max z(S)
ScJ

where

m

(9.1) z(S) max c. - f.
iz1 j( S 13

is the profit made when the set S of facilities is open. A very important

property of the set function z is its submodularity, A function w

defined on the subsets of a finite set J is submodular if

w(Sufk}) - w(S) <. w(Ru{k}) -w(R) for all k f S and R a S .J - {k}.

The fact that the profit function z is submodular was observed by

Spielberg (1969a), Babayev (1974), Frieze (1974) and Fisher, Nemhauser and

Wolsey (1978). It means that the additional profit that can be made by

opening a facility in location k when a set S is already open in other

locations is a nonincreasing function of S with respect to set inclusion.

The larger S, the smaller the profit of establishing a new facility. This

is proved formally in the next theorem.

Theorem 9.1 The profit function z is submodular.
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Proof Let R c S c J - {k}. For all i 1,...,m

max c - max c max(O, ci - max ci.)
jeuk j je j ik je j

<max (0 c ma C. max a

-max(O, Cik - max ci.) - max C - max cij
JeR jeRu{k} jeR

where the inequality follows from max cij >max c 
ij"

By summing these Inequalities for all i, we obtain

m m m m
max c - max ci  max c - maxc "1j L1 jeS ii;l jESU{k} i=i jeS i1 jeRu{k} c i i 1 j(R

Hence

z(Su{k}) - z(S) < z(Ru{k}) - z(R). 0

Thus UL is a special case of the more general problem

(9.2) max {z(S): z submodular}.

S~.J

We can apply the greedy and interchange heuristics to (9.2), we can formulate

(9.2) as an integer program and many of the results that we have given for UL

extend to (9.2) and, in particular, to the capacitated location problem which

is another special case of it. We will not elaborate on these results here,

but refer the interested reader to Fisher, Nemhauser and Wolsey (1978),

Nemhauser and Wolsey (1978), Nemhauser, Wolsey and Fisher (1978), Cornuejols,

Nemhauser and Wolsey (1980) and Nemhauser and Wolsey (1981).

4-#
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